

产品规格书 DATA SHEET

Part No: MHK2396YGGBTD REV.2

本产品符合 ROHS 指令有关限制有害物质的环保要求.

日期 DATE	拟制 PREPARED	审核 VERIFIED	批准 APPROVED
2018-11-27	Liu		John
	客户签回 CUSTOM	IER'S APPROVAL	

电 话Tel: 0518-83286000 传 真Fax: 0518-83696699 邮件E-mail: <u>sales@lygmh.com.cn</u> 网址Web: <u>http://www.lygmh.com.cn</u> 地址ADD: 中国•江苏省连云港市灌南经济开发区北环路 North Around Road,Guannan EDA,Lianyungang City,Jiangsu Province China.

1/12 Date:2018/11/27 Issue No: LLDS-3805077 Rev.2 www.lygmh.com.cn

P/N: MHK2396YGGBTD

LED LAMP

极限参数 Absolute Maximum Ratings(Ta=25℃) LED1

	•			
参数	符号	极限值 Rating	单位	
Parameter	Symbol		Unit	
单字节功耗	PAD	85/78	mW	
Power Dissipation Per Segment	FAD	03/70	IIIVV	
每个芯片的峰值正向电流				
Peak Forward Current Per Chip	IPF	80/120	mA	
(Duty=0.1,1KHZ)				
平均正向电流	IF	30	mA	
Average Forward Current	IF	30	ША	
反向电压	VR 5		V	
Reverse Voltage	۷K	5	v	
从 25°C 降额线性		0.3	mA/°C	
Derating Linear From 25°C	-	0.5		
工作温度	т	25° to 85°		
Operating Temperature Range	T_{OPR} -25 °C to 85 °C			
储藏温度	T _{STG} -40℃ to 85℃		<u>۰</u>	
Storage Temperature Range	T _{STG}	-40 0 10 00		

SymbolParameterTest ConditionMinTypMaxUnit VF $ErhEKF$ $ErhEKF$ $Y:IF = 20mA$ -2.152.8 V IR $\bar{\chi}char{matrix}$ $G: IF = 20mA$ -2.12.6 V IR $\bar{\chi}char{matrix}$ $Y/G:VR=5V$ 100uA λD $\pm ik K$ $Y/G:VR=5V$ 100uA λD $\pm ik K$ $Y:IF = 20mA$ -586-nm $\Delta \lambda$ $\frac{Fik K}{Spectral Line Half-Width}$ $Y:IF = 20mA$ -570nm $201/2$ $Fik R fitY:IF = 20mA-30-nm201/2\frac{Fik R fitY:IF = 20mA-60g: IF = 20mA-60deg201/2\frac{Fik R fitY:IF = 20mA-80-\chi:IF = 20mA-15$:电特性	电特性 Optical-Electrical Characteristic(Ta=25℃) LED1					
VF 正向压降 Forward Voltage Q G: IF = 20mA - 2.1 2.6 IR 反向漏电流 Reverse Current Y/G:VR=5V - - 100 uA λD 主波长 Dominant Wavelength Y/IF = 20mA - 586 - nm $\Delta \lambda$ 半波宽 Spectral Line Half—Width Y:IF = 20mA - 570 nm $\Delta \lambda$ 半視角 Half Intensity Angle Y:IF = 20mA - 35 - nm $201/2$ 半視角 Half Intensity Angle Y:IF = 20mA - 60 - deg Iv 发光强度 Luminous Intensity Y:IF = 20mA - 80 - mcc							单位 Unit
Forward Voltage G: IF = 20mA - 2.1 2.6 IR \overline{k} (\overline{k}) (正向压降	Y:IF = 20mA	-	2.15	2.8	
IRReverse CurrentY/G:VR=5V100UA λD 主波长 Dominant WavelengthY:IF = 20mA-586-nm $\Delta \lambda$ 半波宽 Spectral Line Half—WidthY:IF = 20mA-570nm $\Delta \lambda$ 半視角 Half Intensity AngleY:IF = 20mA-35-nm $201/2$ 半視角 	VF	Forward Voltage	G: IF = 20mA	-	2.1	2.6	V
入D主波长 Dominant WavelengthnmG: IF = 20mA-570 $\Delta\lambda$ 半波宽 Spectral Line Half—WidthY:IF = 20mA-35-G: IF = 20mA-300nmC1/2半视角 Half Intensity AngleY:IF = 20mA-60-Iv发光强度 Luminous IntensityY:IF = 20mA-80deg	IR		Y/G:VR=5V	-	-	100	uA
$\frac{Dominant Wavelength}{G: IF = 20mA} - 570$ $\frac{4}{V:IF} = 20mA - 35 - mm$ $\frac{5}{G: IF = 20mA} - 30$ $\frac{1}{G: IF = 20mA} - 30$ $\frac{1}{G: IF = 20mA} - 30$ $\frac{1}{G: IF = 20mA} - 60 - mm$ $\frac{1}{G: IF = 20mA} - 60 - mm$ $\frac{1}{G: IF = 20mA} - 80$ $\frac{1}{G: IF = 20mA} - 80$ $\frac{1}{V:IF = 20mA} - 15 - mm$		主波长	Y:IF = 20mA	-	586	-	
$\Delta \lambda = \frac{\text{半波宽}}{\text{Spectral Line Half-Width}} = 20 \text{mm} + \frac{1}{20 \text{mm}} + \frac{1}{20 \text{m}} +$	λD	Dominant Wavelength	G: IF = 20mA	-	570		
Spectral Line Half—WidthG: IF = 20mA30201/2半视角 Half Intensity AngleY:IF = 20mA60-G: IF = 20mA-60-degG: IF = 20mA-80-degIv发光强度 Luminous IntensityY:IF = 20mA-15-v欠光强度 Luminous IntensityY:IF = 20mA-15-	• `	半波宽	Y:IF = 20mA	-	35	-	
201/2 半视角 Half Intensity Angle deg G: IF = 20mA - 80 Iv 发光强度 Luminous Intensity Y:IF = 20mA - 15 -		Spectral Line Half—Width	G: IF = 20mA	-	30		- nm
Half Intensity Angle G: IF = 20mA - 80 Iv 发光强度 Y:IF = 20mA - 15 - Iv Luminous Intensity mcc	201/2	半视角	Y:IF = 20mA	-	60	-	- deg
Luminous Intensity mcc		Half Intensity Angle	G: IF = 20mA	-	80		
Luminous Intensity	lv		Y:IF = 20mA	-	15	-	- mcd
			G: IF = 20mA	-	20		

P/N: MHK2396YGGBTD

LED LAMP

极限参数 Absolute Maximum Ratings(Ta=25℃) LED2

	参数	符号	极降	艮值 Rat	ing	单位
	Parameter	Symbol				Unit
_	单字节功耗	PAD		78		mw
Power Dissipation Per Segment						
	每个芯片的峰值正向电流					_
Pe	ak Forward Current Per Chip	nip IPF 120			mΑ	
(Duty=0.1,1KHZ)						
	平均正向电流	IF		30		mΑ
	Average Forward Current					
	反向电压	VR		5		V
	Reverse Voltage					
	从 25°C 降额线性	-		0.3		mA/°(
	Derating Linear From 25°C					
-	工作温度	T _{OPR}		-25 ℃	to 85 ℃	
Op	perating Temperature Range					
储藏温度		T _{STG}		-40℃ to 85℃		
_		LSIG		$-\mathbf{T}\mathbf{U}$		
S	itorage Temperature Range	1516		- C		
			=25°(LED	2
	torage Temperature Range	racteristic(Ta 测试条件	=25℃ 最小			
电特性	torage Temperature Range	racteristic(Ta		C)	LED	2 单位 Unit
电特性 ^{符号} Symbol	storage Temperature Range Coptical-Electrical Cha 参数	racteristic(Ta 测试条件 Test Condition	最小	C) 标准 Typ	LED2 最大 Max	单位 Unit
电特性 符号	storage Temperature Range Coptical-Electrical Cha 参数 Parameter	racteristic(Ta 测试条件	最小	C) 标准	LED2 最大	单位
电特性 ^{符号} Symbol VF	itorage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降	racteristic(Ta 测试条件 Test Condition IF = 20mA	最小	C) 标准 Typ	LED2 最大 Max 2.6	单位 Unit V
电特性 ^{符号} Symbol	itorage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage	racteristic(Ta 测试条件 Test Condition	最小	C) 标准 Typ	LED2 最大 Max	单位 Unit
电特性 ^{符号} Symbol VF IR	Storage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流	racteristic(Ta 测试条件 Test Condition IF = 20mA VR=5V	最小	C) 标准 Typ 2.1 -	LED2 最大 Max 2.6	单位 Unit V uA
电特性 ^{符号} Symbol VF	itorage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流 Reverse Current	racteristic(Ta 测试条件 Test Condition IF = 20mA	最小	C) 标准 Typ	LED2 最大 Max 2.6	单位 Unit V
电特性 ^{符号} Symbol VF IR λD	itorage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流 Reverse Current 主波长 Dominant Wavelength	racteristic(Ta 测试条件 Test Condition IF = 20mA VR=5V IF = 20mA	最小	C) 标准 Typ 2.1 - 570	LED2 最大 Max 2.6	单位 Unit V uA nm
电特性 ^{符号} Symbol VF IR	itorage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流 Reverse Current 主波长 Dominant Wavelength 半波宽	racteristic(Ta 测试条件 Test Condition IF = 20mA VR=5V	最小	C) 标准 Typ 2.1 -	LED2 最大 Max 2.6	单位 Unit V uA nm
电特性 ^{符号} Symbol VF IR λD	itorage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流 Reverse Current 主波长 Dominant Wavelength 半波宽 Spectral Line Half-Width	racteristic(Ta 测试条件 Test Condition IF = 20mA VR=5V IF = 20mA	最小	C) 标准 Typ 2.1 - 570	LED2 最大 Max 2.6	单位 Unit V uA
电特性 ^{符号} Symbol VF IR λD Δλ	Storage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流 Reverse Current 主波长 Dominant Wavelength 半波宽 Spectral Line Half—Width 半视角	racteristic(Ta 测试条件 Test Condition IF = 20mA VR=5V IF = 20mA	最小	C) 标准 Typ 2.1 - 570	LED2 最大 Max 2.6	单位 Unit V uA nm
电特性 ^{符号} Symbol VF IR λD	itorage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流 Reverse Current 主波长 Dominant Wavelength 半波宽 Spectral Line Half-Width	racteristic(Ta 测试条件 Test Condition IF = 20mA VR=5V IF = 20mA IF = 20mA	最小	C) 标准 Typ 2.1 - 570 30	LED2 最大 Max 2.6	单位 Unit V uA nm
电特性 ^{符号} Symbol VF IR λD Δλ	Storage Temperature Range Coptical-Electrical Cha 参数 Parameter 正向压降 Forward Voltage 反向漏电流 Reverse Current 主波长 Dominant Wavelength 半波宽 Spectral Line Half—Width 半视角	racteristic(Ta 测试条件 Test Condition IF = 20mA VR=5V IF = 20mA IF = 20mA	最小	C) 标准 Typ 2.1 - 570 30	LED2 最大 Max 2.6	单位 Unit V uA nm

8/12 Date:2018/11/27 Issue No: LLDS-3805077 Rev.2 www.lygmh.com.cn

P/N: MHK2396YGGBTD

LED LAMP

标签 Label

连云港美华电子科技有限公司

P/N:MHK2396YGGBTD

L/N: xxxxxxxxx

QTY:xxxx pcs

DATA: xxxxx

- P/N: 型号 Part Number
- LOT No: 生产单号 Lot Number
- QTY: 数量 Packing Quantity
- DATA:生产日期 Data
- IV:亮度Luminous Intensity(参考Reference)
- VF:电压 Forward Voltage(参考 Reference)

P/N: MHK2396YGGBTD

LED LAMP

焊接 SOLDERING

方法	焊接条件	备注
METHOD	SOLDERING CONDITIONS	REMARK
浸焊 DIP SOLDERING	沐浴温度:240℃ 最高 Bath temperature: 240℃ max 浸润时间:5 秒/1 次 Immersion time: within 5 sec/1 time	焊接点不要在距封装 3mm 以内 Solder no closer than 3mm from the base of the package 建议使用树脂助焊剂 Using soldering flux," RESIN FLUX" is
		recommended.
	烙铁功率要小于 30W	焊接时烙铁头请勿碰到 PIN
烙铁焊	Soldering iron: 30W or smaller	During soldering, take care not to press
SOLDERING	烙铁头温度小于: 260℃	the tip of iron against the PIN
IRON	Temperature at tip of iron: 260 $^\circ\!\mathrm{C}$ or lower	(阻止热量直接传到 PIN上.)
INON	焊接时间:3秒/1次	(To prevent heat from being transferred
	Soldering time: within 3 sec/1 time.	directly to the PIN.)

P/N: MHK2396YGGBTD

LED LAMP

储藏 STORAGE

1. LED 在出厂后可在温度 30 度以下, 湿度 70%以下的环境内保存 3 个月时间 The LED should be stored at 30℃ or less and 70% RH or less after being shipped from MH and the storage life limits are 3 months.

2. 美华的 LED 支架是铁合金镀锡的,表面的镀层会被腐蚀性的气体侵蚀,因此不要将 它保存在可能导致支架氧化,失去光泽或变色的环境,这些腐蚀可能会导致焊接困难, 建议尽快使用 Meihua's LED lead frames are comprised of a stannum plated iron alloy. The silver surface may be affected by environments which contain corrosive gases and so on. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the LED be used as soon as possible.

3. 请避免保存在温度变化明显,尤其是高湿度的地方 Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur.

使用注意事项 Application Restrictions

1. 本文档中所描述的规范。上述规格可变更不通知。美华将对上述规格的材料更改的保 留权。specification described in this document. Above specification may be changed without notice. Meihua will reserve authority on material change for above specification.

2. 使用本产品时,请遵守绝对最大额定值及这些规格书的使用说明。美华不负责的使用 造成的任何损害承担产品不符合绝对最大额定值,并在这些指令中包含规格书。When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. Meihua assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.

 这些规格表包括美华公司下版权保护的材料。请不要复制或导致任何人没有提供同意 复制。These specification sheets include materials protected under copyright of Meihua Corporation. Please don't reproduce or cause anyone to reproduce them without Meihua's consent.

P/N: MHK2396YGGBTD

LED LAMP

4. 静电放电(静电放电)ESD (Electrostatic Discharge

产品敏感的静电或冲击电压。当使用产品时静电放电会损坏模具及其可靠性。对静电放电的措施强烈推荐: The products are sensitive to static electricity or surge voltage. ESD can damage a die and its reliability. When handling the products, the following measures against electrostatic discharge are strongly recommended:

消除电荷 Eliminating the charge

接地的手环,防静电鞋,衣服和地板 Grounded wrist strap, ESD footwear, clothes, and floors

接地的工作站设备和工具 Grounded workstation equipment and tools

导电材料的防静电工作台/架子 ESD table/shelf mat made of conductive materials

正确的接地用于所有装置、设备和机器生产过程所必须。在产品设计时应考虑冲击保护。 Proper grounding is required for all devices, equipment, and machinery used in product assembly.Surge protection should be considered when designing of commercial products.

如果工具或设备含有绝缘如玻璃或塑料材料,需要做下列静电放电预防措施: If tools or equipment contain insulating materials such as glass or plastic,the following measures against electrostatic discharge are strongly recommended:

用导电材料耗散静电电荷 Dissipating static charge with conductive materials 保持环境的湿度 Preventing charge generation with moisture

使用离子风扇中和静电 Neutralizing the charge with ionizers

5. 发光二极管正向电流方向使用,驱动电路的设计必须使 LED 在关闭的状态下不经受 正向或逆向电压,如果反向电压不断应用于发光二极管,它可以导致 LED 损坏 The LEDs should be operated with forward bias. The driving circuit must be designed so that the LEDs are not subjected to forward or reverse voltage while it is off. If reverse voltage is continuously applied to the LEDs, it may cause migration resulting in LED damage.